A Traffic Event Detection Method Based on Random Forest and Permutation Importance

نویسندگان

چکیده

Although the video surveillance system plays an important role in intelligent transportation, limited camera views make it difficult to observe many traffic events. In this paper, we collect and combine flow variables from multi-source sensors, propose a PITED method based on Random Forest (RF) Permutation importance (PI) for event detection. This model selects suitable by means of permutation arrangement importance, establishes whole process acquisition, preprocessing, quantization, modeling evaluation. Moreover, real data are collected tested paper evaluating experiment performance, including miss/false rate event, average detection time. The experimental results show that is more than 85% false alarm less 3%. It effective efficient practical application regardless both workdays holidays.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest

The prediction accuracy of short-term load forecast (STLF) depends on prediction model choice and feature selection result. In this paper, a novel random forest (RF)-based feature selection method for STLF is proposed. First, 243 related features were extracted from historical load data and the time information of prediction points to form the original feature set. Subsequently, the original fe...

متن کامل

P2P Network Traffic Identification Based on Random Forest Algorithm

With the rapid development of computer technique in the past decades, the emergence of P2P techniqueprompts the network computing model evolving from centralized network to distributed network. Although P2P technique has brought tremendous changes to the network technique, P2P technique also exposes a lot of problems during its implementation. If we can manage the P2P network traffic effectivel...

متن کامل

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Active Build-Model Random Forest Method for Network Traffic Classification

Network traffic classification continues to be an interesting subject among numerous networking communities. This method introduces multi-beneficial solutions in different avenues, such as network security, network management, anomaly detection, and quality-of-service. In this paper, we propose a supervised machine learning method that efficiently classifies different types of applications usin...

متن کامل

A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set

Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10060873